Stochastic Environmental Research and Risk Assessment, 2024 (SCI-Expanded)
Given the critical role of the clean energy market in the global economy and environmental sustainability, this paper investigates the impact of the U.S. Business Conditions Index (ADS) on the risk of segmented clean energy markets across different time scales and market conditions, as well as its spillover mechanisms. By using wavelet coherence and wavelet quantile analysis, we examine how the Aruoba–Diebold–Scotti (ADS) Business Conditions Index affects the risk levels of segmented clean energy indices under varying market conditions. To further understand this impact mechanism, we also employ the quantile Granger causality test to analyze the spillover effects of ADS on the clean energy market. The results show that the ADS index significantly influences the risk levels of segmented clean energy markets, with notable differences across various time scales and market conditions. The contributions of this study include: (1) segmenting the measurement of clean energy market risk into the Solar Index (SOLAR), Renewable Energy Index (RE), Biomass Index (BIO), Wind Energy Index (WIND), and Clean Energy Index (WILDER); (2) providing new evidence on the impact of the ADS Business Conditions Index on segmented clean energy market risk; and (3) offering new perspectives for different clean energy market participants to better navigate complex business environments and develop effective risk management strategies.