Investigation of the Improvements on Mechanical Properties and Thermal Performance of MgO-MgAl2O4 Composite Refractories by Additions of ZnO-Al2O3 to MgO

Aksel C.

14th International Conference on Advances in Materials and Processing Technologies (AMPT), İstanbul, Turkey, 13 - 16 July 2011, vol.445, pp.530-535 identifier identifier

  • Publication Type: Conference Paper / Full Text
  • Volume: 445
  • Doi Number: 10.4028/
  • City: İstanbul
  • Country: Turkey
  • Page Numbers: pp.530-535
  • Keywords: MgO, MgAl2O4, ZnAl2O4, ZnO, Al2O3, Composite, Refractory, Mechanical properties, Thermal stress/shock parameters, SPINEL
  • Anadolu University Affiliated: Yes


The variations and developments with the reasons on the mechanical properties of MgO-MgAl2O4 and MgO-ZnO-Al2O3 composite refractories were examined and thermal parameters affecting the durability of composites at high temperatures were investigated. The density, porosity, strength, modulus of elasticity, fracture toughness, fracture surface energy, critical defect size and mean MgO grain size values of composites were measured/calculated and evaluated. In addition, microstructural changes using XRD measurements and SEM analysis were examined. Thermal stress/shock parameters R and R-st that are used for determining high temperature performance of composites were calculated. The relationships between mechanical properties and structural variations for different compositions and the factors affecting this connection were investigated. With the additions of various amounts of ZnO-Al2O3 to MgO, significant improvements were achieved on both mechanical properties and R-R-st parameters of in-situ formed M-S-ZnAl2O4 composite refractories, compared to MgO-MgAl2O4 materials containing preformed spinel, by factors of up to 3.6 and 2.0, respectively. The important parameters increasing mechanical properties and thermal performance of M-S-ZnAl2O4 composites were determined as follows: i)formation of ZnAl2O4 phase leading to a high resistance to crack initiation and propagation, ii) propagation of microcracks formed in the structure for a short distance by interlinking to each other, iii) arresting or deviation of microcracks when reaching pores or ZnAl2O4 particles, and additionally iv) co-presence of both intergranular and transgranular types of cracks on fracture surfaces, and with the incorporations of ZnO-Al2O3, v) increase in density, vi) rise in critical defect size, and vii) a significant reduction in MgO grain size. The optimisation of M-S-ZnAl2O4 composite refractories that could be used for obtaining longer service life in industrial applications was performed.