Dynamic Fuzzy System Design for Modeling and Control of Nonlinear Dynamical Processes


Yilmaz S., Oysal Y.

Science and Information Conference (SAI), London, Kanada, 28 - 30 Temmuz 2015, ss.463-467, (Tam Metin Bildiri) identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Doi Numarası: 10.1109/sai.2015.7237183
  • Basıldığı Şehir: London
  • Basıldığı Ülke: Kanada
  • Sayfa Sayıları: ss.463-467
  • Anahtar Kelimeler: ANFIS, Dynamic Adaptive Neuro-Fuzzy Inference System, System Modeling, IDENTIFICATION
  • Anadolu Üniversitesi Adresli: Evet

Özet

This paper introduces the architecture and learning procedure of dynamic fuzzy system (DFS) and its control application with linear quadratic regulator (LQR). Our DFS model is a Takagi-Sugeno type fuzzy system. IF parts of the rules are Gaussian type membership functions and THEN parts of the rules are differential equations with linear functions of inputs. We give bioreactor modeling and control results in order to show efficiency of the proposed model.