ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES, cilt.19, sa.3, ss.156-175, 2021 (SCI-Expanded)
Corona virus disease-2019 (COVID-19) emerged in Wuhan, China in December 2019 and was declared as a pandemic by the World Health Organization in March 2020. Although there is no complete treatment protocol for COVID-19, studies on this topic are ongoing, and it is known that broad-spectrum antibiotics such as cephalosporins are used for coinfections and symptoms in COVID-19 patients. Studies have shown that Staphylococcus aureus and Escherichia coli bacteria can cause symptoms such as diarrhea and coinfections accompanying COVID-19. Therefore, in this study, colon-targeted cefaclor monohydrate (CEF)-loaded poly(lactic-co-glycolic acid) (PLGA)-Eudragit S100 nanoparticles (NPs) were prepared using a nanoprecipitation technique. The particle sizes of the CEF-loaded NPs were between 171.4 and 198.8 nm. The encapsulation efficiency was in the range of 58.4%-81.2%. With dissolution studies, it has been concluded that formulations prepared with Eudragit S100 (E-coded) and Eudragit S100+PLGA (EP-coded) are pH-sensitive formulations and they are targetable to the colon, whereas the formulation prepared only with PLGA (P-coded) can release a higher CEF rate in the colon owing to the slow release properties of PLGA. The release kinetics were fitted to the Korsmeyer-Peppas and Weibull models. The antibacterial activity of E-, EP-, and P-coded formulations was 16-fold, 16-fold, and 2-fold higher than CEF, respectively, for S. aureus and E. coli according to the microdilution results. As a result of the time killing experiment, all formulations prepared were found to be more effective than the antibiotic itself for long periods. Consequently, all formulations prepared in this study hope to guide researchers/clinicians in treating both gram-positive and gram-negative bacteria-induced infections, as well as COVID-19 associated coinfections and symptoms.