Hyperbolic octonionic Proca-Maxwell equations


Creative Commons License

CANDEMİR N., TANIŞLI M., ÖZDAŞ K., Demir S.

ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, vol.63, no.1-2, pp.15-18, 2008 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 63 Issue: 1-2
  • Publication Date: 2008
  • Doi Number: 10.1515/zna-2008-1-203
  • Journal Name: ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.15-18
  • Keywords: hyperbolic octonion, Proca field equation, Proca-Maxwell equations, CONIC SEDENIONS, ALGEBRA, ELECTROMAGNETISM, ELECTRODYNAMICS, HYPERNUMBERS, RELATIVITY, GRAVITY
  • Anadolu University Affiliated: Yes

Abstract

In this study, after introducing the hyperbolic octonionic (counteroctonion) algebra, which is also expressed in the sub-algebra of sedenions, and differential operator, Proca-Maxwell equations and relevant field equations are derived in compact, simpler and elegant forms using hyperbolic octonions. This formalism demonstrates that Proca-Maxwell equations can be expressed in a single equation.