Design, synthesis, and biological activity studies of carbonic anhydrase inhibitors


Erzurum D., OSMANİYE D., SAĞLIK ÖZKAN B. N., LEVENT S., ÖZKAY Y., KAPLANCIKLI Z. A.

ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES, cilt.78, sa.11-12, ss.421-432, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 78 Sayı: 11-12
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1515/znc-2023-0102
  • Dergi Adı: ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.421-432
  • Anahtar Kelimeler: carbonic anhydrase, molecular docking, molecular dynamics, sulfonamide
  • Anadolu Üniversitesi Adresli: Evet

Özet

Carbonic anhydrase (CA) enzymes are a common catalytic enzyme in many organisms. Vertebrates and invertebrates have different CA isoforms. Sixteen different isozymes of the alpha-CA isoform found in vertebrates have been identified so far. The main task of this enzyme is to catalyze the reversible conversion of carbon dioxide into bicarbonate and hydrogen ions in the body. It is widely distributed in many organs and tissues. They are involved in important physiological processes such as pH and CO2 homeostasis, biosynthetic reactions such as gluconeogenesis, lipogenesis, ureagenesis, bone resorption, calcification, tumorigenicity, and electrolyte secretion. As a result of the literature research, it has been determined that the most effective inhibitor of the carbonic anhydrase enzyme is sulfonamides. The R group in the general molecular structure of R-SO2-NH2 generally consists of aromatic or heteroaromatic ring systems. The sulfonamides interact strongly with the Zn2+ ions in the active site of the enzyme. In this study, 10 sulfonamide derivatives were synthesized. Analyses of the obtained compounds are evaluated by using H-1 NMR, C-13 NMR and HRMS spectroscopic methods. The inhibition effect of the obtained compounds on the carbonic anhydrase enzyme was investigated by means of in vitro kit method. For the selected compounds, docking studies were performed and the enzyme active sites and binding points were determined. It was revealed that the strongest interaction with CA enzymes (CA-I, CA-II, CA-IX, CA-XII) active sites was observed with the compound 2e.