Antioxidant and Antiangiogenic Effect of Homoleptic Palladium (II) Carboxamide Complex Loaded Chitosan Modified PLGA Nanoparticles: In vitro Evaluation and In vivo Chick Embryo Chorioallantoic Membrane (CAM) Assay

Creative Commons License

Öztürk A. A.

LETTERS IN DRUG DESIGN AND DISCOVERY, vol.20, no.8, pp.1158-1170, 2023 (SCI-Expanded)

  • Publication Type: Article / Article
  • Volume: 20 Issue: 8
  • Publication Date: 2023
  • Doi Number: 10.2174/1570180820666230214091500
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE
  • Page Numbers: pp.1158-1170
  • Anadolu University Affiliated: Yes


Background: Angiogenesis is a natural and complex mechanism that is regulated by biomolecules formed by the body. Medicinal inorganic chemistry is increasing in popularity due to metal-based compounds, offering significant chances and possibilities for building novel anti-cancer medicines with promising anti-angiogenic effects.

Objective: This study aimed to examine the successful results obtained from treatments with nanoparticle formulations of active drug substances.

Methods: The nanoprecipitation/solvent displacement approach, with some changes, was used to make PLGA-based NPs.

Result: The particle size obtained in the blank formulation was 82.4-473.9 nm, while the particle size in the API-loaded NPs was 193.2-678.0 nm. Among the formulations, NP-950-P, NP-390-P, and NP-350- CSP2 were found to have significant antioxidant potentials with IC50 values of 3.025, 5.198, and 7.4242 μg.mL-1, respectively, when compared to Vit C. According to the microscopic evaluations, NP-950-P (including Pd(PyCrbx)2Cl2 as 50 μg.pellet-1) and NP-950-CSP2 (including Pd(PyCrbx)2Cl2 as 50 μg.pellet-1) showed strong anti-angiogenic effect whereas the other NP formulations showed weak antiangiogenic effect when compared with the positive control (±)-Thalidomide at the concentration of 50 μg.pellet-1.

Conclusion: When the results were examined, it was found that nanoscale drug carrier systems were prepared, and high antioxidant activity and anti-angiogenesis activity were detected, especially in nanoparticles prepared with 950. As per our knowledge, it is the first study in this field that will bring a new perspective to cancer treatment.