Matrix rings with summand intersection property


Creative Commons License

Karabacak F., Tercan A.

CZECHOSLOVAK MATHEMATICAL JOURNAL, cilt.53, sa.3, ss.621-626, 2003 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 53 Sayı: 3
  • Basım Tarihi: 2003
  • Doi Numarası: 10.1023/b:cmaj.0000024507.03939.ce
  • Dergi Adı: CZECHOSLOVAK MATHEMATICAL JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.621-626
  • Anahtar Kelimeler: modules, summand intersection property, Morita invariant, MODULES
  • Anadolu Üniversitesi Adresli: Hayır

Özet

A ring R has right SIP (SSP) if the intersection (sum) of two direct summands of R is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of R by M has SIP if and only if R has SIP and (1 - e)Me = 0 for every idempotent e in R. Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP.