Reproducing kernels for harmonic Besov spaces on the ball


Creative Commons License

Gergun S., KAPTANOĞLU H. T., ÜREYEN A. E.

COMPTES RENDUS MATHEMATIQUE, cilt.347, sa.13-14, ss.735-738, 2009 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 347 Sayı: 13-14
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1016/j.crma.2009.04.016
  • Dergi Adı: COMPTES RENDUS MATHEMATIQUE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.735-738
  • Anadolu Üniversitesi Adresli: Hayır

Özet

Besov spaces of harmonic functions on the unit ball of R '' are defined by requiring Sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this article: S. Gergun et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.